
A Mathematical View of the Rubik’s Cube and Other

Twisty Puzzles

Kenneth R Roffo Jr
B.S. in Physics, Computer Science, Mathematics

State University of New York, College at Oswego
College Honors Program

September, 2016

1



Abstract

Rubik’s Cube is a very well-known puzzle which looks simple at first, but turns out to be very
difficult. There are many other puzzles similar to Rubik’s Cube called twisty puzzles. Twisty
puzzles come in all sorts of different shapes and sizes, but they all exhibit very interesting
mathematical properties. In this project I have analyzed the Rubik’s Cube as well as other
twisty puzzles from a mathematical standpoint. The Rubik’s Cube is shown to be solvable
using only five of its six side turns. Mathematical constructs, called groups, are presented
and used to understand how twisty puzzles behave. The Dino Cube, a corner turning twisty
puzzle, is lightly explored. Finally, an original cube created during the project, now called
the Roffo Cube, is examined.
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1 Advice to Future Honors Thesis Students

The Honors Thesis scares a lot of students into dropping out of the Honors Program at

SUNY Oswego; I have witnessed at least a dozen people drop the program because of the

thesis, well before even starting the project. While it is true that the thesis is a lot of work,

it is false that the thesis is something that you will dread doing while you work on it. It

is not required so that you do more work, but because it truly is a great experience. The

honors thesis allows you to explore a topic of your interest, and truly do what you want.

It is not an assignment in which you must do something you don’t care about; it is an

opportunity for you to do something amazing. That being said, here is some advice for

working on your thesis.

Pick a topic you are very interested in. You will be working on the project for a long

time, and you will have a much better experience doing something that interests you rather

than something you think looks good to other people. This is the most important cubie of

advice, and you will hear it many times.

Start early. The earlier you start, the more time you have. With more time you will be

less stressed about meeting deadlines, and you will be more focused on learning rather than

actually putting together a paper about the project.

Set goals. Having a long time to do a project, it can be easy to get into the mindset

that there is no rush to get things done. This can be very bad, as it can lead you to make

little to no progress in the beginning or middle of your project. You should meet with your

adviser and set goals for when you would like to have certain things done. It can be very

helpful to have regularly scheduled meetings, with goals from one to the next. I personally

did weekly meetings, and had a new set of goals every week.
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3 Author’s Reflections

As a freshman, hearing about the Honors Thesis was scary. Many people dropped out of

the honors program because they didn’t want that kind of responsibility, and many of the

students who stayed in the honors program dreaded having to work on the thesis eventually.

I never complained about having to do the project, but I will admit that there were times

where I worried about how much work it would take. The Honors Thesis did take a lot of

work. A lot. However, having worked on it for almost two years, I can honestly say that it

was not something painful or boring. The process of studying something I love through a

subject I love was pretty enlightening.

Having weekly meetings for three and a half semesters on this project, I have certainly

learned a lot about math and twisty puzzles which I never even talked about in the classroom.

This alone makes the project an awesome opportunity, but the benefits don’t stop there.

Presenting on the project at conferences made me a better presenter. Explaining the project

to other students and professors made me better at putting my thoughts and understanding

of complex things into words that inexperienced minds could understand.

Now that I am done with the project, I feel that I have grown both as a student, and as

a person. The Thesis was never something to dread; it was something to look forward to,

an opportunity.
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4 Thesis Body

Introduction

One of the most fascinating puzzles available today is the Rubik’s Cube.

The Rubik’s Cube is a cube whose 6 sides

are made up of smaller pieces called cu-

bies. Cubies can move around each other

such that each side of the puzzle can be ro-

tated about its center. Each of these sides

is referred to as a face, and each face con-

tains 9 square stickers. When the puzzle is

solved, each face contains stickers of only

one color.

In total, there are 54 stickers that must

be put in the correct spots for the puzzle

to be solved. It has been calculated that

there are over 43 quintillion different pos-

sible arrangements of the cubies. (Num-

berphile 2012)

This sounds daunting, but there is a much better way of looking at the cube. To start,

we shall label the faces. Holding the cube looking directly at one face, the faces are labeled

as follows:

The F face: The face in view, the front face.

The R face: The face to the right, the right face.

The L face: The face to the left, the left face.

The U face: The face on top, the up face.

The D face: The face on bottom, the down face.

The B face: The unseen face, the back face.

The one letter abbreviations will be our main way of referring to each face. Each of

these faces consists of three types of cubies: centers, edges, and corners.
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Figure 1: The U center, UFL Corner, and UF Edge cubies of a Rubik’s Cube oriented with white
in front and red on top.

1. There are 6 center cubies on the cube, each located in the center of a face. These

cubies rotate in place, but they have fixed position relative to the other centers. This

is helpful as it means the center cubies act as a reference for where other cubies belong.

Center cubies have one sticker. They determine the color that the corresponding face

will be when the cube is solved. A center can be referred to by the letter representing

the face it is a part of. For example the center on the U face is the U center.

2. There are 12 edge cubies on the cube. The edge cubies are in the middle of the rows

and columns along the sides of the cube. Edges have two stickers. An edge cubie can

be referred to by the letters representing the faces it is a part of. For example, the

UF edge is the edge that has stickers on both the U and F faces of the cube.

3. Lastly, there are 8 corner cubies on the cube. Corner cubies have 3 stickers. Like edges,

corners are individually labeled by the three faces they have stickers on. The UFR

corner is a member of the U , F , and R faces. When referring to a cubie, the order in

which these letters appear does not matter. However, we will refer to specific corner

stickers later and when doing so, the face the sticker is on should come first. Thus

UFR,FUR and RUF all refer to the same corner, but they refer to three different

stickers.

Now that we have an understanding of the different cubies, we can think of the cube as

20 movable cubies that must be put into a specific arrangement.

The cube supports one type of movement, called a face turn. A face turn is the 90

degree clockwise rotation of one face of the cube, so the edges and corners on that face move
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around the center. That means a face turn only affects cubies that are part of that face.

Since there are six faces, there are only six possible clockwise 90 degree turns on the cube

at any given time.

To keep track of this, we give names to each turn, the letter representing that face. A

letter by itself means to turn the corresponding face 90 degrees clockwise. A B turn is

turning the B face counterclockwise as viewed from the front of the cube, but it is actually

turning clockwise if viewed from the back. A letter followed by a superscript 2, say B2,

means to turn the corresponding face 180 degrees. Lastly, a letter followed by a superscript

−1, such as F−1, means to turn the corresponding face counterclockwise. Thus to refer to

the a face, such as the Right face, we say “the R face”, but to refer to an R turn, we say

“R”.

Now that the notation for turns on the Rubik’s Cube is defined, we must define a

scramble. A scramble is a sequence of turns. For example the scramble

FBF 2D−1UR2

means to execute an F turn, followed by a B turn, then an F 2 turn, then D−1, U and finally

R2.

To find the inverse of a scramble, reverse its order and switch clockwise and counter-

clockwise rotations. The scramble

FBF 2D−1UR2

has inverse

R2U−1DF 2B−1F−1.

A solution to a scramble is a scramble that will return each cubie to the position in

which it belongs. The inverse of a given scramble is also a solution to that scramble.

Permutations and Groups

Mathematicians have a practical way of describing things such as the behavior of twisty

puzzles. These are called permutations. Basically, a face turn permutes, or changes the

position of, each cubie on the turned face of the cube and thereby the stickers contained by

those cubies. We can label the stickers, and write down how each face turn permutes the
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stickers of the cube. It is important to note that in the following diagram the labels refer

to the positions the stickers are in, and not the stickers themselves.

Permutations can be written down using cycles such as (FR,RF ). It is not standard to

use commas in cycle notation, but we use them to help with clarity. In a cycle, the sticker

in the position of a given symbol is sent to the position corresponding to the next symbol in

the cycle (read left to right). Note that the last symbol’s “next” is the first symbol in the

cycle. In the cycle (FR,RF ), the FR and RF stickers are swapped. Since these stickers are

the stickers of the RF edge, this permutation corresponds to flipping the edge in it’s place.

The result of this permutation is shown below:
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Cycle notation is very useful for studying twisty puzzles, as every turn on a twisty puzzle

contains at least one cycle.

A permutation can have multiple cycles. Following are the 6 face turns written in cycle

notation using the above labeling scheme:

U = (UF, UL, UB, UR)(UFL, ULB, URB, UFR)(FU, LU, BU, RU)

(BRU, RUF, FUL, LUB)(BLU, RUB, FUR, LUF )

F = (FD, FL, FU, FR)(FDL, FUL, FUR, FDR)(DF, LF, UF, RF )

(DFL, LUF, UFR, RFD)(DFR, LFD, UFL, RUF )

R = (RD, RF, RU, RB)(RFD, RUF, RUB, RBD)(DR, FR, UR, BR)

(DFR, FUR, URB, BRD)(DBR, FDR, UFR, BRU)

L = (LD, LB, LU, LF )(LBD, LUB, LUF, LFD)(FL, DL, BL, UL)

(BLD, ULB, FUL, DFL)(BLU, UFL, FDL, DBL)

D = (DB, DL, DF, DR)(DBL, DFL, DFR, DBR)(BD, LD, FD, RD)

(BLD, RBD, FDR, LFD)(BDR, RFD, FDL, LBD)

B = (BD, BR, BU, BL)(BDR, BRU, BLU, BLD)(DB, RB, UB, LB)

(RUB, DBR, LBD, ULB)(RBD, DBL, LUF, URB)

Mathematicians describe permutations using the language of group theory.

Definition (Group). A group (G, ∗), where G is a set, and ∗ is a binary operation which

combines two elements of G, and the following properties are satisfied:

1. ∗ is associative on G.

2. G is closed under ∗.

3. There exists an identity element e in G such that g ∗ e = e ∗ g = g, for all g in G.

4. For every g in G, there exists an inverse g−1 in G such that g ∗ g−1 = g−1 ∗ g = e.

Note that when multiple groups are present, say G and H, their operations may be

referred to by ∗G for G and ∗H for H. (Dummit and Foote 2004)
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For twisty puzzles, the set is the set of all scrambles. The operation is composition, or

doing the permutation which appears on the left, then the one on the right. For simplicity,

we will not write the ∗, thus F ∗B = FB, meaning an F turn, followed by a B turn (Note

that this is in contrast to the standard form for composing permutations). For the remainder

of the text, it should be clear based on context whether FB is referring to a permutation

or a sticker.

It is important to understand that there are many ways to permute the stickers on a

twisty puzzle, but there are (except for extremely simple twisty puzzles) fewer permutations

in the group of the puzzle. There are permutations which are not possible to achieve using

face turns. For example the permutation (F,UF ) is impossible since it requires a center

sticker to switch with an edge sticker. A less obvious example is that it is impossible to

swap two edges on the cube (without also permuting other cubies). This means that the

Rubik’s Cube group is smaller than the group of permutations on the stickers. In fact, the

Rubik’s Cube group is a subgroup of the group of permutations on the stickers.

Definition (Subgroup). A subgroup (H, ∗) of a group (G, ∗) is a group in which H is a

subset of G (note that the operation must be the same in both the subgroup, H and the

supergroup, G).

For example, the even integers under addition is a subgroup of all the integers under

addition.

Definition (Generating Set). A generating set, S for a group G is a set of elements from G

such that for any g in G, g is the composition of a finite number of elements of S (or their

inverses).

For example, the integers under addition has the generating set {1}. Every positive

integer a can be created by adding 1 a times. Every negative integer b can be created by

adding -1, the inverse of 1, b times. Lastly, 0 can be created by adding 1 to itself 0 times.

Note that generating sets are not unique, and in fact an entire group can be correctly

referred to as a generating set for itself.

One way mathematicians like to study groups is by thinking of them as combinations of

smaller, simpler groups. The direct product allows us to combine groups.

Definition (Direct Product). A direct product of two groups G and H, denoted G×H is a

group whose elements are all the ordered pairs (g, h) where g ∈ G, h ∈ H and the operation

is defined by

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2).
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Direct products can be formed with more than two groups. Doing so, this definition is

extended by using tuples, as opposed to ordered pairs, where each element comes from the

corresponding group in the product. (Burn 1985)

As an example, consider the groups Z2 and Z3 (Zn is shorthand for the group of integers

under addition (mod n)). The direct product of the groups is Z2 × Z3 and contains six

elements:

(0, 0), (0, 1), (0, 2),

(1, 0), (1, 1), (1, 2).

The operation in this group will be a combination of addition mod 2 and mod 3. Combining

some elements we see

(1, 0) ∗ (1, 2) = (1 + 1 mod 2, 0 + 2 mod 3)

= (0, 2).

The Necessary and Sufficient Five Generators

Now that we have an understanding of some basic concepts in group theory, we can study

the Rubik’s Cube Group. The 6 turn types will now be referred to as the 6 generators, as

they generate the Rubik’s Cube group. This is assured by the fact that the only way to

permute the cubies of the cube is by doing one of these 6 face turns. One might ask whether

all 6 of the face turns are necessary to form a generating set. I claim that using no less than

5 generators, say F,U,R,L and B (no D turn), any scramble can be solved.

Proposition 1. Any 5 element subset of the set of face turns is a minimal generating set

for the Rubik’s Cube Group.

Proof. We must first show that it is possible to solve any scramble using 6 turn types. Every

scramble is made using at most 6 turn types. The inverse of a scramble can be applied to

return the cube to its original state (solved) and thus is a solution. Thus it is possible to

solve any scramble using 6 turn types, F,L,R,U,B and D.

If it is possible to find a sequence of moves using 5 turn types that equals the sixth, then

5 turn types are sufficient to solve any scramble. Thus if we can construct a D move using

the other 5 turn types, then any scramble is solvable using 5 turn types. Note that D can be

executed twice for a D2 and thrice for a D−1, so only D must be constructed. The sequence
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of moves to simulate a D turn with the other 5 turn types is as follows (parentheses to help

with clarity):

(R2 L2 U−1 F 2 B2) U−1 R−1 L U2 R2 L2 U2 R2 U2 R2 L2 U2 L

(R−1 U2 R2 U2 R2 U2) (L2 U2 L2 U2 L2 U2) (F 2 U2 F 2 U2 F 2 U2)

(B2 U2 B2 U2 B2 U2)

(R U R−1 U−1 R−1 F R2 U−1 R−1 U−1 R U R−1 F−1) U

(R−1 F R−1 B2 R F−1 R−1 B2 R2) U.

For any given scramble, a solution can be found using 6 turn types. Then, wherever a D

appears, it can be replaced with the above permutation to give a solution which uses only

5 turn types.

We must now show that 5 turn types are necessary to solve any scramble. We will show

it is not possible to solve every scramble using 4 turn types. To allow only 4 turn types, we

must choose two turn types to not allow. Because of the symmetry of a cube, we can either

choose two adjacent faces (Case 1), or two opposite faces (Case 2), to fix.

Case 1: Let’s choose two adjacent faces to fix. Now orient the cube so that one of these

faces is the Front face, and the other is the Up face. In our chosen orientation, the UF edge

is only on the locked faces (Shown to the right). This means this cubie may never move

using our available four turn types. Now consider the simple scramble U (remember our

scramble is not limited to 4 turn types, only our solution). The obvious solution would be

a U−1 turn, but we are not allowed to make F or U turns. We need a way to move the UF
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edge back to its original, UR position. As stated above, since the UF edge is not a member

of a movable face, this task is impossible, thus the cube cannot be solved.

Case 2: Now choose two opposite faces to fix. Without loss of generality, say the U and

D faces are locked. Now consider any scramble in which the UF edge is in the right spot,

but needs to be flipped to have the correct orientation. As an example we will refer to the

above diagram.

In picture 1 we have a cube with a flipped edge in the UF position. The scramble I have

used here is

D2 (R−1 L U2 R L−1 B L R−1 U−1 R L−1) F 2 (R−1 L U R L−1 B−1 R−1 L U2 R L−1) F 2 D2

which results in the UF and BD edges each being flipped.

We need to be able to flip this edge and put it back in this spot without turning the U

or D faces. When the edge is a part of the U or D faces it will be impossible to move it

other than by turning the other face it is on, in this case F . Therefore moving the edge to

the D or U faces will be useless and thus we shall not do so. This leaves us with 2 moves,

F and F−1, to choose from. However, due to the symmetry of the cube, one case will result

in a flipped but equivalent version of the other, so we will just choose F−1, knowing that F

would lead to a similar outcome.

Now the edge is a member of the F and L faces as seen in picture 2. Since we decided

to do an F−1 turn before, turning the F face now would contradict our decision, so we

must choose an L turn. Note that L and L−1 would move the edge to the D and U faces

respectively, which would force us to make another L turn, so the only useful move to help
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us reach our goal is L2, which brings the cube to the state shown in picture 3 (the cube has

been rotated in the pictures to show where the edge of interest is, but we will consider the

Green face to still be the F face).

Now the edge is in the LB position. Just like before, we came from an L move, so another

one would be pointless, and B and B−1 result in useless positions in the U and D layers.

So B2 must be the only sensible move to make here, which brings us to picture 4. For the

same reasons the only move that makes sense is R2 (since the edge is in the BR position),

bringing us to picture 5.

Now the edge is once again a member of the F face. All thats left to do is an F−1 to

put the edge back in the original position only to see that it has not been flipped, as seen

in picture 6. This means that it is impossible for us to flip the edge without using a U or a

D move. Therefore 4 turn types is not sufficient to solve every scramble.

Since 4 turn types is not enough to solve all scrambles, and 5 turn types is, it is indeed

so that 5 turn types is necessary and sufficient to solve any scramble on a Rubiks cube.

It is important to note that although the five face turns form a minimal generating set,

they do not form the minimum generating set. In fact it has been shown that there exists

a two-element generating set. These elements are, however, much more complex than the

face turns. (Singmaster 1981)

Dino Cube Transitivity

Figure 2: The Dino Cube, a corner
turning twisty puzzle.

The Dino Cube is a twisty puzzle containing nothing more

than twelve edges. The Dino Cube, compared to most

twisty puzzles, is relatively simple. Sill we can study its

behavior to learn something about more intense puzzles.

Unlike the Rubik’s Cube, the Dino Cube does not twist

around its six faces. Instead, the Dino Cube twists around

its 8 corners. Since these 8 turns are the only way to move

the cubies on the Dino Cube, they form a generating set

for the Dino Cube group.

To aid us in our exploration of the Dino Cube, we will

label the corners (and thereby, corner turns) using letters, just like the faces of the Rubik’s

Cube. The picture below displays the names of the corners we will use, A - H.

16



A B

CD

E F

G

H

You may have noticed that each face of the Dino Cube

is broken up into 4 stickers. We can also label the stickers

to help us see how each twist of the puzzle acts on them.

We use numbers to prevent confusion with the labeling of

the corners.

The stickers have been labeled as shown in the diagram

below. Here, the top square is the back face of the cube and the middle of the cross is the

top face.

a1

b1
a2

b2 a3

b3
a4

b4

a5

b5

a6

b6

a7

b7

a8

b8

a9

b9
a10

b10

a11

b11
a12

b12

One of the things you may find yourself asking is if each sticker can go to the spot of

every other sticker on the cube. If this is the case, we say the Dino Cube group is transitive

on the stickers.

Proposition 2. The Dino Cube group is not transitive on the stickers.

Proof. We can begin to check if this is true by writing out the permutations. In what

follows, the label of a corner represents the permutation on the stickers which occurs by a

120 degree clockwise rotation about that corner.
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A = (a2, a9, a7)(b2, b9, b7)

B = (a3, a10, a2)(b2, b4, b9)

C = (a10, a4, a11)(b4, b11, b10)

D = (a9, a11, a8)(b7, b10, b12)

E = (a2, a7, a6)(b2, b8, b5)

F = (a1, a5, a3)(b1, b5, b3)

G = (a5, a4, a12)(b6, b3, b11)

H = (a6, a8, a12)(b6, b8, b12)

Looking at these generators, we see bn’s are never sent to am’s and vice versa. Thus,

a sticker labeled bn can never be sent to the position of a sticker labeled am, so the Dino

Cube group is not transitive on the stickers.

Designing a New Cube

Figure 3: The mastermorphix is a
shape-mod of a Rubik’s Cube. the
Edges around the F face are high-
lighted in green, and the corners in
yellow.

One of the main goals of the project was to design an orig-

inal twisty puzzle. The inspiration for a puzzle came from

looking at the mastermorphix. The mastermorphix is a

pyramid shaped twisty puzzle. Upon playing with a mas-

termorphix, an experienced Rubik’s Cube solver will notice

that it functions in the same way as the Rubik’s Cube. In

fact, the mastermorphix could be thought of as a misshapen

Rubik’s Cube.

Seeing such a puzzle brought about the question: If a

cube shaped puzzle can be morphed into a pyramid shaped

puzzle, can a pyramid shaped puzzle be morphed into a

cube shaped puzzle? Of course, the mastermorphix could

be changed back to the Rubik’s Cube, but this is trivial – what about other pyramid shaped

puzzles. The only other pyramid puzzle available to us was the Pyraminx, which functions

very differently than the Rubik’s Cube. After drawing several pictures trying to come up

with a way to turn the pyraminx into a cube shaped puzzle, the sketches in figure 5 were

achieved.
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Figure 4: The Pyraminx is one of
the more well known twisty puzzles

This design is similar to the pyraminx, though it has a

key difference. The pyraminx turns around its four corners,

but this puzzle turns around its 8 corners. The turns are

similar – they each consist of a rotating a corner in place,

and cycling three edges – but there are different numbers

of them.

Despite the failure to turn the pyraminx into a cube

shaped puzzle, this new puzzle was found to not yet exist,

and so it was this design that was brought to life through

the project.

This puzzle, now called the Roffo Cube, consists of 8

corners, 12 edges, and 6 centers. A turn on the Roffo Cube

means to rotate a corner clockwise 120 degrees, thus permuting the three edges adjacent to

that corner. One important thing to note about the cube is that since the edges and corners

cannot switch places, the edges and corners can be thought of separately.

Mathematically speaking, the orbit of a corner (all the places it can go) is itself, and

the orbit of an edge is all the edges of the puzzle. It becomes clear that the edges of the

Roffo Cube work in the same manner of the edges of the Dino Cube. In fact, the group of

permutations on the edges via corner turns of the Roffo cube is isomorphic to (or the same

as) the Dino Cube group.

Figure 5

(a) Shown above are the cubies affected by each
corner turn of the Roffo Cube. For example, turn-
ing the blue corner will move all of the three edges
containing blue. Note that edges have two colors,
since they are adjacent to two corners at any point
in time.

(b) Shown above is how the Roffo cube would
look after being printed in black and properly
stickered.
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Corollary. (To Proposition 2)

The Roffo Cube group is not transitive on the stickers.

It is possible to explore the Roffo Cube group using mathematics without having a

physical copy, however one of the goals of this project was to 3D print the puzzle. Tinkercad

was used to design the puzzle. The design process involved some 3D geometry, especially

for making the corner cubies, which had to have right angles between each pair of faces at

the apex. After 10 or so weeks of designing, the cube was printed at Penfield library. This

allowed for the design to be tested, changed and reprinted, and eventually the final version

was printed via Shapeways.com.

(a) My first attempt at creating a corner
piece.

(b) The outside of the final version of
the corner pieces.

Figure 6: Beginning steps in Tinkercad.
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Figure 7: The final versions of the edges and corners before adding the internal mechanism.

Figure 8: The final pieces, ready for 3D printing.

Corner Edge Independence

On the Roffo Cube, the edges and corners cannot permute with each other. Thus the Roffo

Cube group may be a direct product of a group for the edges (the Dino Cube Group) and

the group which describes the ways the corners can be permuted.

A given corner has three orientations in its fixed position, so the group of permutations

on a single corner is Z3. Since there are 8 corners, each independent from the others, the

group describing the 8 corners is really an 8-fold direct product of Z3, which we denote

by Z8
3. One might begin to think that the Roffo Cube group is the direct product of the

Dino Cube group, D, and the corner describing group, Z8
3, but there is a problem. To
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assume this is to assume that every permutation in the direct product D×Z8
3 is a member

of the Roffo Cube group, but this is not known to be the case. This would imply that one

could conceivably solve the edges of the puzzle like a Dino Cube, then orient each corner

separately.

In the end, we were able to answer this question using the physical cube, but before the

cube was printed, we applied theory in an attempt to explore the problem. We looked for

a way to turn just one corner of the cube without affecting the edges. Being able to do so

would allow any permutation in the direct product to be executed by permuting the edges

first (while ignoring the corners), and then permuting the corners without disturbing the

edges. Thus finding such a permutation would be enough to prove that the Roffo Cube

group is D × Z8
3.

To start, we label the corners of the Roffo Cube via the following diagram. Here, the

labels are the permutations achieved by rotating the corresponding corner clockwise.

a h

de

b c

g

f

To turn exactly one corner, without affecting any edges, we first endeavor to find a way

to turn at least one corner, without affecting the edges. The following algorithm does just

that:

hcbadgcb2afba2f2gd2f2gfg2f2gfg2.

The way this permutation effects the corners is equivalent to the way the corners are affected

by h(abc2g2). Since the edges are not affected, this shorter notation will be used to represent

the larger one. Note that we could rotate the cube through any of its rigid motions, and we

can find 24 different permutations which exhibit this behavior.

h(abc2g2) c(ab2f2h) b(a2ce2h) a(bcd2h2)

h(a2b2de) c(a2dh2g) b(c2fgh2) a(b2c2ef)

h(cd2e2g) c(bd2fg2) b(aef2g2) a(de2f2h)
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d(a2e2fg) e(b2df2g) f(c2deg2) g(d2efh2)

d(cf2g2h) e(ad2g2h) f(abd2e2) g(bce2f2)

d(ac2eh2) e(a2bfh2) f(a2b2cg) g(b2c2dh)

If these permutations can be used to generate a single turn of a corner, then by symmetry

it will be possible to turn every corner, implying the group which acts on the corners of this

cube is Z8
3. If that is the case, then there are no less than 8 generators for the corner group

of the Roffo cube (one permutation for each corner). Thus if it can be shown that these

permutations can be generated by less than 8 permutations, they do not form Z8
3.

One can see

(h(abc2g2))(c(a2dgh2)) = bd.

It turns out that all 24 generators can be paired up in such a way, and when done, we

have 4 permutations, each of which can be obtained by three different combinations of two

generators. Also

(h(abc2g2))(b(c2fgh2)) = ab2cf.

Again, it turns out that we end up with 8 permutations of this form.

We have now found twelve more permutations, but for what purpose? The goal is to

build a generating set which contains less than 8 elements, as this would show that the corner

permutations do not form Z8
3. However, before looking at ways of reducing the twelve we

have now, we must first convince ourselves that they indeed form a generating set for the

group of permutations on the corners of the Roffo Cube.

It may help to give a more concrete example of what these are.
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Figure 9

a h

de

b c

g

f

(a) The first simplified permutations just
show us that we have the ability to rotate op-
posite corners on the cube together. For ex-
ample, bd rotates corners b and d, which are
opposite of each other (on the left). These
will be referred to as opposite corner permu-
tations.

a h

de

b c

g

f

(b) The second simplified permutation con-
sists of rotating a corner twice (red), and all
3 of its neighbors once (green). For example,
in acfb2, we see a, c and f are the neighbors
of b and each of them turns once while b turns
twice (on the right). These will be called T
permutations.

If we combine bd with acdh2, we get a(bcd2h2). One can imagine taking the above two

images and overlaying them on top of each other. Since green squares represent single turns,

when two greens are combined they become a red, since they form a double turn. This is

illustrated below.

a h

de

b c

g

f

We also notice that we can combine a(bcd2h2) with each of ce and ag to get d(ac2eh2)

and c(a2dgh2). Likewise, we can take any of the eight T shape permutations and combine it

with each of three opposite corner rotations to generate three more elements from the given

generating set. That’s 24 total permutations, and one can check that in fact they are the

same 24 permutations in our generating set.

This shows that this set of 12 permutations is a smaller generating set for the group of

permutations of the corners of the Roffo Cube.

24



a h

de

b c

g

f

(begh)

a h

de

b c

g

f

(acdf)

ag a2beh ade2f

bd ab2cf bef2g

ce bc2gh cdfg2

fh d2egh acdh2

By using two generators from the first generating set, we have

(h(abc2g2))(b(a2ce2h)) = b2e2g2h2.

Note that doing this twice gives begh. We also have

(f(c2deg2))2(d(a2e2fg))2 = acdf.

Now let’s see what happens when we combine these with in our 12 element generating set.

(acdf)(ag)2 = cdfg2

(acdf)(bd)2 = acb2f

(acdf)(ce)2 = ade2f

(acdf)(fh)2 = acdh2

(begh)(ag)2 = a2beh

(begh)(bd)2 = d2egh

(begh)(ce)2 = bc2gh

(begh)(fh)2 = bef2g

Combining each of the two new permutations with all four of the opposite corner permu-

tations gives all of the T permutations. Thus the set containing the two new permutations

and the 4 opposite corner permutations is a generating set. But this set has 6 elements,

which is less than 8, so the group generated by it cannot be Z8
3.

Thus using the algorithm I have found, it could not be shown that the Roffo Cube

corner group is Z8
3, but this does not mean it is not. It is simply inconclusive. After this

investigation the question remained unanswered, but having a functional Roffo Cube led us

to the answer.
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The Roffo Cube

Figure 11: The final version of the Roffo Cube. The centers do not move, and they are not stickered,
but they play a key role in holding the edges into the puzzle during a turn.

With the Roffo Cube complete, it became possible to explore the its properties by actually

performing permutations. Upon experimenting with the puzzle for several minutes, I found

the following algorithm (Notation from previous section):

(hah−1a)2

Execution of this permutation rotates the a corner while nothing else on the puzzle is

effected, as seen on the following page.
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This shows that the Roffo Cube Group is isomorphic to

D × Z8
3.

Every permutation in the group has the form

k = (x, ya, yb, yc, yd, ye, yf , yg, yh)

where x is the permutation on the edges and ya, yb, ...yh are the permutations on each of

the corners a-h respectively. To perform a given scramble, execute x to permute the edges,

then use the corner rotating permutation on each corner until the scramble is achieved.

Conclusions

Studying twisty puzzles with math can be difficult, but it is a very fun and effective way

of exploring different concepts in group theory. From a cuber’s perspective, learning group

theory explains a lot of things which happen while playing with twisty puzzles, which before

seemed to have no reason. From a mathematician’s perspective, twisty puzzles appear to

be very complex creatures and even things which act in simple ways can open up an entire

world of complexity.

Designing a twisty puzzle is no easy task, but it is well worth it. It is a process which

requires a lot of time and patience, but having an original twisty puzzle is a great accom-

plishment to be proud of.

The final copy, as well as prototypes, is kept in the SUNY Oswego Math Department.
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A prototype of the Roffo Cube.
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