A Necessary Set of Turns to Solve a Rubik's Cube

Kenny Roffo

Advisors: Bonita Graham and David Vampola

SUNY Oswego

April 18, 2015

The Cube

Definition

A <u>scramble</u> is an arrangement of the pieces of the cube that is solvable by turning the faces of the cube

The Cube

Definition

A <u>scramble</u> is an arrangement of the pieces of the cube that is solvable by turning the faces of the cube

• The Rubik's Cube has 43, 252, 003, 274, 489, 856, 000 scrambles

The Six Turns

• The cube has 6 faces:

Kenny Roffo A Necessary Set of Turns to Solve a Rubik's Cube

- The cube has 6 faces:
 - Right

- The cube has 6 faces:
 - Right
 - Left

- The cube has 6 faces:
 - Right
 - Left
 - Front

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - o Down

- The cube has 6 faces:
 - Right
 - Left
 - Front
 - Back
 - Up
 - ٩

- The cube has 6 faces:
 - Right R
 - **Left** *L*
 - Front F
 - Back B
 - Up U
 - - D

- The cube has 6 faces:
 - **Right** *R*
 - **Left** *L*
 - Front F
 - Back B
 - Up U
 - - D
- 90 degree clockwise rotation

The Six Turns

- The cube has 6 faces:
 - **Right** *R*
 - **Left** *L*
 - Front F
 - Back B
 - Up U

- D
- 90 degree clockwise rotation
- R, L, F, B, U, \mathbb{D} are permutations

Examples

$R \ U^2 \ \mathbb{D}^2 \ U^{-1} \ \mathbb{D}^2 \ U^{-1} \ R^{-1}$

Kenny Roffo A Necessary Set of Turns to Solve a Rubik's Cube

Examples

• The Identity Permutation:

 $R \ U^2 \ \mathbb{D}^2 \ U^{-1} \ \mathbb{D}^2 \ U^{-1} \ R^{-1}$

Kenny Roffo A Necessary Set of Turns to Solve a Rubik's Cube

Examples

• The Identity Permutation:

$$R \ U^2 \ \mathbb{D}^2 \ U^{-1} \ \mathbb{D}^2 \ U^{-1} \ R^{-1}$$

• Consider an "A-Perm":

$$R^{-1} F R^{-1} B^2 R F^{-1} R^{-1} B^2 R^2$$

Examples

• The Identity Permutation:

$$R \ U^2 \ \mathbb{D}^2 \ U^{-1} \ \mathbb{D}^2 \ U^{-1} \ R^{-1}$$

• Consider an "A-Perm":

$$R^{-1} F R^{-1} B^2 R F^{-1} R^{-1} B^2 R^2$$

• The inverse of this permutation is:

$$R^2 B^2 R F R^{-1} B^2 R F^{-1} R$$

The Conditions for Generators

• The face turns can be considered the generators of the Rubik's Cube group

The Conditions for Generators

• The face turns can be considered the generators of the Rubik's Cube group

Proposition

The generators R, L, F, B and U will be necessary and sufficient to solve any scramble of a Rubik's Cube.

Necessity of 5 generators

Consider cases:

Kenny Roffo A Necessary Set of Turns to Solve a Rubik's Cube

Necessity of 5 generators

Consider cases:

• Restrict two adjacent faces

Necessity of 5 generators

Consider cases:

- Restrict two adjacent faces
- Restrict two opposite faces

Necessity: Restricting Two Adjacent Faces

• Without loss of generality, we will consider the *U* and *F* face turns to be restricted

Necessity: Restricting Two Adjacent Faces

• Without loss of generality, we will consider the *U* and *F* face turns to be restricted

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

Necessity: Restricting Two Opposite Faces

The Big Permutation

$$\begin{pmatrix} R^{2} \ L^{2} \ U^{-1} \ F^{2} \ B^{2} \end{pmatrix} \underbrace{U^{-1} \ R^{-1} \ L \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ R^{2} \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \$$

Video of the D Permutation

Youtube Link to Video

Kenny Roffo A Necessary Set of Turns to Solve a Rubik's Cube

The Big Permutation

$$\begin{pmatrix} R^{2} \ L^{2} \ U^{-1} \ F^{2} \ B^{2} \end{pmatrix} \underbrace{U^{-1} \ R^{-1} \ L \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ R^{2} \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \$$

The Big Permutation

$$\begin{pmatrix} R^{2} \ L^{2} \ U^{-1} \ F^{2} \ B^{2} \end{pmatrix} \underbrace{U^{-1} \ R^{-1} \ L \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ R^{2} \ U^{2} \ R^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ U^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ L^{2} \ L^{2} \ U^{2} \ L^{2} \ U^{2} \ L^{2} \ U^{2} \ L^{2} \ U^{2} \$$

 $=\mathbb{D}$